

Resolving Oracle Latch Contention

By Guy Harrison

Principal Software Architect, Quest Software

Contents
Resolving Oracle Latch Contention...1

Introduction...3
What Are Latches?..3

How Latches Work...3

Causes of contention for specific latches...4

Measuring Latch Contention ..4
Ratio-based Techniques..4
Wait interface-based techniques...6

Tuning the Application to Avoid Latch Contention............................7
Using Bind Variables..7
Avoiding Hot Blocks ...7

Is Latch Contention Inevitable? ...7

Investigating _spin_count ..8
Relationship Between Spin Count, Latch Contention and Throughput...8
Conclusion...10
About the Author ...11
About Quest Software ...11

Resolving Oracle Latch Contention
By Guy Harrison

Introduction
This white paper presents an overview of how the Oracle RDBMS uses latches to protect
shared memory, the typical causes of and solutions to latch contention, and summarizes some
research conducted at Quest Software that suggests that manipulating the (now)
undocumented parameter “_spin_count” can be effective in relieving otherwise intractable
latch contention problems.

What Are Latches?
Latches are serialization mechanisms that protect areas of Oracle’s shared memory (the
SGA). In simple terms, latches prevent two processes from simultaneously updating — and
possibly corrupting — the same area of the SGA.

Oracle sessions need to update or read from the SGA for almost all database operations. For
instance:

• When a session reads a block from disk, it must modify a free block in the buffer
cache and adjust the buffer cache LRU chain1.

• When a session reads a block from the SGA, it will modify the LRU chain.
• When a new SQL statement is parsed, it will be added to the library cache within the

SGA.
• As modifications are made to blocks, entries are placed in the redo buffer.
• The database writer periodically writes buffers from the cache to disk (and must

update their status from “dirty” to “clean”).
• The redo log writer writes entries from the redo buffer to the redo logs.

Latches prevent any of these operations from colliding and possibly corrupting the SGA.

How Latches Work
Because the duration of operations against memory is very small (typically in the order of
nanoseconds) and the frequency of latch requests very high, the latching mechanism needs to
be very lightweight. On most systems, a single machine instruction called “test and set” is
used to see if the latch is taken (by looking at a specific memory address) and if not, acquire it
(by changing the value in the memory address).

If the latch is already in use, Oracle can assume that it will not be in use for long, so rather
than go into a passive wait (e.g., relinquish the CPU and go to sleep) Oracle will retry the
operation a number of times before giving up and going to passive wait. This algorithm is
called acquiring a spinlock and the number of “spins” before sleeping is controlled by the
Oracle initialization parameter “_spin_count”.

The first time the session fails to acquire the latch by spinning, it will attempt to awaken after
10 milliseconds. Subsequent waits will increase in duration and in extreme circumstances
may exceed one second. In a system suffering from intense contention for latches, these waits
will have a severe impact on response time and throughput.

1 The LRU (Least Recently Used) chain records how often individual blocks have been accessed. If a
block is not accessed it moves towards the LRU end of the list and eventually is flushed from the cache.

Causes of contention for specific latches
The latches that most frequently affect performance are those protecting the buffer cache,
areas of the shared pool and the redo buffer.

• Library cache latches: These latches protect the library cache in which sharable
SQL is stored. In a well defined application there should be little or no contention for
these latches, but in an application that uses literals instead of bind variables (for
instance “WHERE surname=’HARRISON’” rather that “WHERE
surname=:surname,” library cache contention is common.

• Redo copy/redo allocation latches: These latches protect the redo log buffer,
which buffers entries made to the redo log. Recent improvements (from Oracle 7.3
onwards) have reduced the frequency and severity of contention for these latches.

• Shared pool latches: These latches are held when allocations or de-allocations of
memory occur in the shared pool. Prior to Oracle 8.1.7, the most common cause of
shared pool latch contention was an overly large shared pool and/or failure to make
use of the reserved area of the shared pool2.

• Cache buffers chain latches: These latches are held when sessions read or write to
buffers in the buffer cache. In Oracle8i, there are typically a very large number of
these latches each of which protects only a handful of blocks. Contention on these
latches is typically caused by concurrent access to a very “hot” block and the most
common type of such a hot block is an index root or branch block (since any index
based query must access the root block).

Measuring Latch Contention
Ratio-based Techniques

Conventional wisdom in the mid-90s was to focus on the latch “miss” rate to determine the
degree of latch contention. Looking at the view v$latch:

Name Null? Type
--- -------- ----------------------------
ADDR RAW(4)
LATCH# NUMBER
LEVEL# NUMBER
NAME VARCHAR2(64)
GETS NUMBER
MISSES NUMBER
SLEEPS NUMBER
IMMEDIATE_GETS NUMBER
IMMEDIATE_MISSES NUMBER
WAITERS_WOKEN NUMBER
WAITS_HOLDING_LATCH NUMBER
SPIN_GETS NUMBER
SLEEP1 NUMBER
SLEEP2 NUMBER
SLEEP3 NUMBER
SLEEP4 NUMBER
SLEEP5 NUMBER
SLEEP6 NUMBER
SLEEP7 NUMBER
SLEEP8 NUMBER
SLEEP9 NUMBER
SLEEP10 NUMBER
SLEEP11 NUMBER

2 The reserved area of the shared pool is intended to hold large contiguous entries in the shared pool (such as large
PL/SQL packages).

We see that for each latch, the number of gets (requests for the latch), misses (number of
times the first request fails) and sleeps (number of times a session failed to obtain a latch by
spinning) are recorded. In the past, queries such as the following were often used to determine
latch health:

SQL> select name, gets, misses, misses*100/gets misspct from v$latch where gets>0;

NAME GETS MISSES MISSPCT
-- ----------- ----------- -------
latch wait list 32 1 3.13
process allocation 28 0 .00
session allocation 1,223,068 84 .01
session switching 8,009 0 .00
process group creation 40 0 .00
session idle bit 2,426,940 1 .00
shared java pool 1,188 0 .00
event group latch 28 0 .00
messages 2,128,851 461 .02
enqueues 3,168,279 7 .00
enqueue hash chains 1,747,312 2 .00
channel handle pool latch 40 0 .00
channel operations parent latch 158 3 1.90
message pool operations parent latch 3 0 .00
file number translation table 946 0 .00
mostly latch-free SCN 1 0 .00
cache buffers lru chain 343,827 0 .00
active checkpoint queue latch 174,293 0 .00
checkpoint queue latch 1,459,929 26 .00
cache buffers chains 13,851,179 16,254 .12
cache buffer handles 61 0 .00

This approach was flawed on a number of levels:

• It is actually the number of sleeps that most accurately influences the impact of the
latch contention on response time.

• A high miss rate is expected for certain latches.
• A latch with a high miss rate (or sleep rate) that is not frequently accessed is probably

not impacting performance.
• Even if a latch is experiencing a high sleep rate, we can’t determine the impact on

performance without taking into account waits for other resources. So if sessions are
waiting 90% for IO, 8% for CPU and 2% for latch, expending effort on halving the
latch sleep wait only provides a 1% improvement in response time – probably not
noticeable.

In the above example the “latch wait list” latch has the highest miss rate. However, this is
totally irrelevant since it was only requested 26 times, while the “cache buffer chains” latch
appears to have only a moderate miss rate, but has been requested almost three million times
and — as we shall see — is the latch most affecting performance.

Wait interface-based techniques
A better approach to estimating the impact of latch contention is to consider the relative
amount of time being spent waiting for latches. The following query gives us some indication
of this:

SELECT event, time_waited,
 round(time_waited*100/ SUM (time_waited) OVER(),2) wait_pct
 FROM (SELECT event, time_waited
 FROM v$system_event
 WHERE event NOT IN
 ('Null event',
 'client message',
 'rdbms ipc reply',
 'smon timer',
 'rdbms ipc message',
 'PX Idle Wait',
 'PL/SQL lock timer',
 'file open',
 'pmon timer',
 'WMON goes to sleep',
 'virtual circuit status',
 'dispatcher timer',
 'SQL*Net message from client',
 'parallel query dequeue wait',
 'pipe get'
) UNION
 (SELECT NAME, VALUE
 FROM v$sysstat
 WHERE NAME LIKE 'CPU used when call started'))
ORDER BY 2 DESC

EVENT TIME_WAITED WAIT_PCT
------------------------------ ----------- ----------
latch free 40144 31.67
CPU used when call started 30341 23.94
control file sequential read 12341 9.74
direct path read 11933 9.41
control file parallel write 6487 5.12
file identify 5666 4.47
log file sync 3492 2.75
log file parallel write 3213 2.53
instance state change 3064 2.42
log file switch completion 3049 2.41
db file sequential read 2290 1.81

Now we can look at the sleeps in v$latch to determine which latches are likely to be
contributing most to this problem:

SQL> select name, gets, sleeps,
 sleeps*100/sum(sleeps) over() sleep_pct, sleeps*100/gets sleep_rate
 from v$latch where gets>0
 order by sleeps desc;

NAME GETS SLEEPS SLEEP_PCT SLEEP_RATE
------------------------------ ----------- ------------ --------- ----------
cache buffers chains 13,863,552 38,071 99.48 .2746
session allocation 1,223,982 110 .29 .0090
checkpoint queue latch 1,461,039 39 .10 .0027
library cache 9,239,751 22 .06 .0002
shared pool 869,652 16 .04 .0018
messages 2,130,515 6 .02 .0003
redo writing 1,330,987 6 .02 .0005
latch wait list 33 0 .00 .0000
session switching 8,014 0 .00 .0000
session idle bit 2,428,851 0 .00 .0000
enqueues 3,171,018 0 .00 .0000
channel handle pool latch 40 0 .00 .0000
message pool operations parent 3 0 .00 .0000
 latch
mostly latch-free SCN 1 0 .00 .0000

Now we are in a position to make some reasonable conclusions:

• Latch sleeps contribute to about 30% of database response time (very excessive),
AND

• It’s the cache buffers chains latches that contributes to the vast majority of these
waits.

Note that if we had used the conventional “ratio based” analysis outlined in the previous
section we would have discounted cache buffers chains latches as a problem because the miss
rate was “only” 0.15%.

Tuning the Application to Avoid Latch Contention
There are some things we can do within our application design that can reduce contention for
latches.

Using Bind Variables
As noted earlier, failure to use bind variables within an application is the major cause of
library cache latch contention. All Oracle applications should make use of bind variables
whenever possible.

However, all is not lost if you are unable to modify your application code. From 8.1.6
onwards you can use the “CURSOR_SHARING” parameter to cause Oracle to modify SQL
on the fly to use bind variables. A setting of FORCE causes all literals to be converted to bind
variables. A setting of SIMILAR causes statements to be rewritten only if it would not cause
the statements execution plan today (which can happen if there are histogram statistics
defined on a column referenced in the WHERE clause).

Avoiding Hot Blocks
Cache buffers chains latch contention is one of the most intractable types of latch contention.
There are a couple of things you can do at the application level to reduce the severity of this
type of contention.

Firstly, identify the blocks that are “hot.” Metalink note 163424.1, “How to Identify a Hot
Block Within The Database” describes how to do this. Having identified the identity of the
hot block, you will most likely find that it is an index root or branch block. If this is the case,
there are two application design changes that may help.

1) Consider partitioning the table and using local indexes. This might allow you to

spread the heat amongst multiple indexes (you will probably want to use a hash
partition to ensure an even spread of load amongst the partitions).

2) Consider converting the table to a hash cluster keyed on the columns of the index.
This allows the index to be bypassed completely and may also result in some other
performance improvements. However, hash clusters are suitable only for tables of
relatively static size, and determining an optimal setting for the SIZE and
HASHKEYS storage parameters are essential.

Is Latch Contention Inevitable?
While conducting performance tuning consultancies or visiting customer sites over the years I
have noticed that the most highly optimized databases running on the most high end hardware
seem to be the ones that suffer most significantly from latch contention.

It would appear that as we remove all other constraints on database performance, contention
for latches becomes the ultimate limiting factor on database throughput.

Imagine we have a perfectly tuned application: we have allocated sufficient memory to the
SGA and have a sufficiently low latency IO sub-system that waits for IO are negligible. CPU
is abundant and exceeds the demands of the application. When we reach this desirable state,
the database will be doing almost nothing but performing shared memory accesses and hence,
latches – which prevent simultaneous access to the same shared memory areas. This will
become the limiting factor.

Some degree of latch contention – probably on the cache buffers chains latch – has to be
accepted in very high volume systems with extremely powerful hardware support.

When all other constraints on the database are removed, contention for shared
memory will probably be the limiting factor on performance.

Investigating _spin_count
Prior to Oracle 8.1, the spin count parameter (_spin_count or latch_spin_count) was a
documented parameter and many DBAs attempted to adjust it to resolve latch contention.
However, as of Oracle8i the parameter is “undocumented” (e.g., does not appear in
v$parameter and is not documented in the Oracle reference manual). Why did Oracle do this?
The official Oracle Corporate line is that the value of _spin_count is correct for almost all
systems and that adjusting it can cause degraded performance. For instance, Metalink
Note:30832.1 says: “If a system is not tight on CPU resource _spin_count can be left at
higher values but anything above 2000 is unlikely to be of any benefit.”

However, I believe that higher values of _spin_count can relieve latch contention in many
circumstances and I think Oracle depreciated the parameter incorrectly.

In this section I will present the results of some experiments I conducted into the effect of
adjusting spin count on the performance of a system suffering from heavy latch contention.
In my research, I created a simulation in which cache buffers chains latch contention became
very severe as a result of hot index blocks. I then adjusted _spin_count programmatically
across a wide range of values and recorded the impact on database throughput, latch waits and
CPU utilization.

Relationship Between _spin_count, Latch Contention and
Throughput
Figure 1 summarizes the relationship between database throughput (as measured by the
number of SQL statement executions per second), the amount of time spent in ‘latch free’
passive waits and the CPU utilization of the system.

The data indicates that as _spin_count increased, waits for latches reduced as CPU utilization
increased. As CPU utilization approached 100%, improvements in throughput ceased even
while latch free wait time continued to reduce.

If throughput fails to increase even as latch free waits decrease then logically, Oracle sessions
must be waiting for another resource. The obvious suspect resource is the CPU. Figure 2
illustrates how throughput relates to the CPU run queue (the number of processes waiting for
the CPU at any time). As we can see, throughput starts to drop off as the run queue
approaches a value of one (which means in effect that sessions will usually wait for the CPU
when they attempt to spin and when they awake after a sleep).

Note that the optimal value for _spin_count in this simulation was somewhere in the vicinity
of 12,000 — six times the default value provided by Oracle and that throughput more than
doubled at this point.

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Spin Count

%

cpu utilization Time waited on latch Execution Rate

Cpu best fit Execution rate best fit latch sleep time best fit

Figure 1: Relationship between _spin_count, CPU utilization, throughput and latch wait

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000

Spin Count value
Execute rate CPU Queue length
Execute rate (best fit) CPU Q length (best fit)

Figure 2: Relationship between _spin_count, CPU queue length and database
throughput

Conclusion
We’ve seen clearly that at least in some circumstances, manipulating the value of _spin_count
can result in very significant reductions in latch free waits and improve the throughput of latch-
constrained applications. Unfortunately, as an undocumented parameter, some DBAs will be
reluctant to manipulate _spin_count. However, if faced with intractable latch contention —
particularly for cache buffers chains latches — manipulating _spin_count may be the only
available option to improve database throughput.

_Spin_count should only be adjusted when there are available CPU resources on the system.
Specifically, if the average CPU Queue length is approaching or greater than 1, then increasing
_spin_count is unlikely to be effective.

Oracle set the default value of _spin_count to 2000 in Oracle7. Over the subsequent 10 or so
years, CPU clock speed has increased by more than a factor of 10. This means that Oracle
systems are spending a decreasing amount of time spinning while the latch sleep time has
remained pretty much constant. So it is arguable that the default value of _spin_count should
have been increased with each release of Oracle.

Tuning _spin_count requires that you carefully monitor CPU utilization and throughput to
determine if the change has been effective. At Quest, we have implemented an automatic
facility that does this within Quest Central. The latch-tuning module is shown in Figure 3.

Figure 3: Quest Central's automatic latch tuning module.

About the Author
Guy Harrison is a principal software architect for Quest Software and a recognized Oracle
expert. With more than 15 years experience in Oracle administration, development,
performance tuning and project management, Guy is the author of Oracle SQL High
Performance Tuning (Prentice-Hall, 1997,2000) and Oracle Desk Reference (Prentice-Hall,
2000) and is a regular contributor to Oracle-related technical journals. Guy was instrumental in
the creation of Spotlight®, a popular diagnostic tool as well as contributing to the development
of other Quest products such as Quest Central™.

About Quest Software
Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering reliable
software products to develop, deploy, manage and maintain enterprise applications without
expensive downtime or business interruption. Targeting high availability, monitoring, database
management and Microsoft infrastructure management, Quest products increase the
performance and uptime of business-critical applications and enable IT professionals to achieve
more with fewer resources. Headquartered in Irvine, Calif., Quest Software has offices around
the globe and more than 18,000 global customers, including 75% of the Fortune 500. For more
information on Quest Software, visit www.quest.com.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
Inside U.S.: 1.800.306.9329
Outside U.S.: 1.949.754.8000

Please refer to our Web site for regional and international office information. For more
information on Quest Central, please visit http://www.quest.com/quest_central/qco/.

Copyright © 2003 Quest Software, Inc. Quest Central is a trademark of Quest Software. The information in this publication is
furnished for information use only, does not constitute a commitment from Quest Software Inc. of any features or functions
discussed and is subject to change without notice. Quest Software, Inc. assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication.

